On Nondifferentiable and Nonconvex Vector Optimization Problems
نویسندگان
چکیده
In this paper, we prove the equivalence among the Minty vector variational-like inequality, Stampacchia vector variational-like inequality, and a nondifferentiable and nonconvex vector optimization problem. By using a fixed-point theorem, we establish also an existence theorem for generalized weakly efficient solutions to the vector optimization problem for nondifferentiable and nonconvex functions.
منابع مشابه
Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملRandom perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraints
We present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the propos...
متن کاملAn Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملMOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions
Many optimization problems arising in high-dimensional statistics decompose naturally into a sum of several terms, where the individual terms are relatively simple but the composite objective function can only be optimized with iterative algorithms. In this paper, we are interested in optimization problems of the form F(Kx) + G(x), where K is a fixed linear transformation, while F and G are fun...
متن کاملExistence of Solutions for Nonconvex and Nonsmooth Vector Optimization Problems
We consider the weakly efficient solution for a class of nonconvex and nonsmooth vector optimization problems in Banach spaces. We show the equivalence between the nonconvex and nonsmooth vector optimization problem and the vector variational-like inequality involving set-valued mappings. We prove some existence results concerned with the weakly efficient solution for the nonconvex and nonsmoot...
متن کامل